MMP Learning Seminar Week 91.

Content:

- · Bounding length of blow-ups 2
- · Bounding multiplicaties of la places.

Lop canonical thresholds of bounded depree.

Theorem 1.8: Let d, r be natural numbers and E>0.

There exists t:= t(d, r, E) satisfies the following. Assume:

- (X,B) is projective ε-lc of dim d,
- · A very ample on X with Ader, X is bounded
- A B is pseudo effective, and ← control sing (XIB).
- · M > O IR Cartier IR divisor, A-M is preff. Then

lct (X,B,IMIR) ≥ lct (X,B,IAIR) ≥ t.

 $|CC \cup A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_4$

Remark: In the previous statement supp B & supp M

are not controlled.

Noether normalization: $X \xrightarrow{f} \mathbb{D}^n$ where $n = \dim X$ finite surjective Cmost of the time not Galois) Alexander. [Man-manifold then there exists a branched cover $M \longrightarrow S^h$]

(which branches along a smooth submanifold of $dim \le h-2$. in dim = 2, we branch along points. in dim = 3, we branch along Borromean circles.

Proposition 5.2 (Finite morphisms to 10d):

Let (X, 1) = Z, i=, S;) be a log smooth projective pair of dim d.

where Λ is reduced. $B = \sum_{i=1}^{n} b_{ij} B_{ij} > 0$. be an $R - d_{inino}$. Assume:

· x ∈ Ω = Si,

Supp B Joes not contain strate of (X.Λ) except possibly 2,

· A & A -S; are very ample

There exists To: X -> ID finite surjective, P(z) = Z = [1:0.....0]

 $\pi(S_i) = H_i$, π is oftale around Z, $Supp(B) \wedge \pi^{-1}(Z) \subseteq X_i$, $\deg \pi = A^d$ and $\deg CC) \leq \deg AB$ where $C = Z_i^a b_i \pi(B_i)$.

Proof: do,..., dd global sections of $O_{\times}(A)$ $X \xrightarrow{\pi} \mathbb{P}^{d}$ finite surjective

												F	ارل xi	x d, r, ε.		
ľ	rope	sibi	on 5	.5	(Ba	nd on	n hur	nber	of	plom -	- ups):	A 5501	ne.		
•	() ^	(B)	pro	je ctrv	e E	-lc	d-dir	n,								
•	LX,	$\Delta Y'$	log	Smoo	Ad ≤ th	Δ r	educed	, Д	2 o.		H	= \frac{1}{2}	H:			
•	x qes	is Se	≤ r ro -di	and m st	rata deg	of C	×,Δ)					[i:o.				
•	T is	a le	o car	onic	ntam al pla	strati ace of	e CX	·Δ) ω	excep ofh	poss center	illy z					
Ţĥ	a C en,	T; X; T ca	B)≤ n be	ex	bracted	бу	toroia	dal bli	οω - <i>υ</i>	os wrł	(X	ν)				
							al	most	p	= pcd	,γ,ε).					
S	Keł	ch:		(χ, ↑	В,	Δ)	rep	lace		⊅d, (), (E)				
				Ť					F	{						
	7	Ve d	o nol	E KI	row	15	(P	, c)	15	ε-lc	away	from	Z = 1	[1:0:	5]	
	Air	n :	mъ	digy	С	50	that	it i	s 6	e'-)c	for	50me				
							dizy		dir.							
					/											

Proof: Slep 3: (IPd, 19+6) is le away from z for some $t \in (0, 72)$ only depending |t| = t(d, r)(IDd, @+tc) will be kit away from supp (@). y∈ Supp @, y ≠ Z. G minimal limear subs which a strata of @ and contains y. G is positive - dimensional. des H' ClG & Y H' is a hyperplane in G. G is not in the support of C.

Inductively (G, tClg) is kill for some to the td.).

Inversion of adjunction implies (IDd, B+tC) is lc in a nobbl of y

Step 4: We construct
$$\triangle$$
 such that CP^{d}, \triangle) is $\epsilon' - lc$, $\epsilon' = \frac{t}{2} \epsilon$, $Kpd + \triangle \sim_{R} o$ and $\alpha(R, P^{d}, \triangle) \leq 1$.

Consider
$$D = (1 - \frac{1}{2}) \Theta + \frac{1}{2} C$$
. The pair $(10^{3}, D)$ is $\epsilon' - 1c$.

If the center contains
$$\mathbb{Z}$$
, then $(\mathbb{P}^{d}, \mathbb{C})$ is \mathbb{E} -lc around it. \mathbb{Z}

If the center does not contain \mathbb{Z} , this is not a loc of $(\mathbb{P}^{d}, \mathbb{G})$.

$$-(K_{\mathbb{P}^{d}} + D) = -(1 - \frac{1}{2})(K_{\mathbb{P}^{d}} + \mathbb{G}) - \frac{1}{2}(K_{\mathbb{P}^{d}} + \mathbb{C})$$

$$deg = 1 \qquad deg > d+1-r$$

By construction
$$\alpha(R, \mathbb{I}^{\mathbb{D}^d}, \mathbb{D}) \leq 1$$
Take $0 \leq G \sim_{\mathbb{R}} - (K_{\mathbb{I}^{\mathbb{D}^d}} + \mathbb{D})$ very general 2

$$set \triangle = D + G.$$

ILeview:

R
D

(X, Λ, Β)

CIPO, Θ, C) Review: ([Dd, C) Joes not have nice size away from Z. (IDd, A+tc) still le away from Z. Construct \(\D\) such that (\D\) is loo (Y), ε'-lc & α(R, 10°, Δ) ≤ 1. Remark: The coefficients of are not controlled.

Step 5: W' pod extracts R Kwit Awis the pull-back of Kpd+ A. > &'-lc - Kw' is by . Run MMP on - Kw'. W'--> W" -K w" is big & semample W" --- W" -- Kw" is ample. $(W', \Delta_{W'}) \longrightarrow (W'', \Delta_{W''})$ is $\epsilon'-1c$ We conclude that WIII is Fano, tonic & E'-lc. Then WIII belongs to a bounded family. It admits a Klt n-complement. We can push-forward this complement to IDd. (NDd, Q) log CT, $n(K_{1P}J+\Omega)\sim 0$, and $\alpha(R, U^{3d}, \Omega) \leq 1$. Step 6: $(IP^d, supp (Q + \Theta))$ is lop bounded. $(IP^d, Q + u \Theta)$ is le for some u only $depending on div, \varepsilon.$ $We conclude \mu_R \phi^* \Theta \leq \frac{1}{u}.$

The length of blow-ups is at most Lie-1).

Proposition 5.7 (Bound of multiplications at lep): Assume Thm 1.8 in Jim & J-1. There exists g == q (d, r, n, e) sabistyry the following. Assume: (X,B) projective ∈-lc d-dim, A very ample Ad ≤ r, Δ≥0 & n A integral. I) A is reduced · L>0 is an IR-divisor, supp B does not · the divisors A-B, A-A. & A-L are pseudo-effective contain strata of • (X,Λ) is le hear ∞ , (X.A) other than a • Tis a lop canonical place of (X-A) with center x. · a (T; X, B) & 1. For any resolution V: U -> X so that T is a divisor on O, we have that $\mu_T v^* L \leq g$. Proof: Cutting with hyperplanes, we may assume a is closed. We will show the statement when (X.11) is by smooth & A 15 reduced. SAim: modity B s.t ils support does not contain } strata of (X, L1) that is not x. $(X, V_i) \longrightarrow (X, V_i)$ (X, L) is log bounded

Step 1: We may assume & is the only 0-strata of (X,1) Step 2: We show that (X, (1+t)B) is $\frac{\epsilon}{2} - 1c$

away from finitely many points. to=t(d,n,r,E).

He IAI general element

(H, BH+ at BH) is kit

By Thm 1.8 in dim d-1 we know that

By invertion of adjunction (X, B+ 2tB) is kit near H

(X, B+ at B) is kit outside

We conclude, taking average that (X, (14)B) is = - 1c

Step 3: Y: V -> X lop resolution. log discrepinales mit (X'B) Iv = (1+t) B + (1- =) Z'E: + (1-a) T Kv+ Iv = Y = (Kx+B) + + B+F where F = 5 (a, - =) E: Ny + [v = 4 " (Kx + (1+ +) B) + G where G = \(\int \tag{2} \) (\(\alpha \) + (\alpha \) - \(\alpha \) \(\alpha \) lop discrepancies wrt (X, (1+1)B). Step 4: Ron a (Kv+Iv)-MMP over X. contract all divisors in the support of G with coeff >a $Kv + \Gamma v = t B + F/x$, so T is not controcted by this MMP. TC: Y -> X that extracts T and is an isom away from finitely points.

 $A\gamma = \pi^*A$, Ky+ Iy+3dAy semiample & big. 0 \(D_7 ~ R \(\frac{1}{t} \) (Kr+ \(\frac{1}{r} + 3d \) Ar) with coeff \(\leq 1 - \varepsilon \). $D_{\tau} = 12^{n} H + \widetilde{B}_{\tau} + \frac{1}{t} F_{\tau}$, for some H~R + (Kx+B+3dA). Denote by D the push-forward of Dr to X. By construction D = H+B Step 6: (X, B) is E-1c very general divisor (Y, B+Rr) sub-E-lc. CY, Ry+ Dr - + Fr) is sub- &-le π* (X,D) (X,D) is E-lc.) We can replace $B \rightsquigarrow D$ $\alpha(T, X, D) \leq 1$ 3 mA - D is ample) & D does not contain strata of (X, A) diff than a.

Step 5: We construct 0 = D7 on Y.

Ky + Ix + 3d Ax semiample 2 big.

Cartier.

Ax. C > 0

Ax. C > 1

3dAx. C > 3d.

Then the extremal negative rays are spinned by

Curves for which (Kx + Ix). C > -2dimx. Boundedness of extremal lengths.