MM
Learning Seminar Week 91.

Content:

- Bounding length of blow-ups \&
- Bounding multiplaches of lo places.

Log canonical thresholds of bounded degree.
Theorem 1.8: Let dir be natural numbers and $\varepsilon>0$.
There exists $t:=t(d, r, \varepsilon)$ satisfies the following. Assume:

- (X, B) is projective $\varepsilon-l$ of $\operatorname{dim} d$,
- A very ample on X with $A^{d} \leqslant r, \longleftarrow X$ is bounded
- $A-B$ is pseudo -effective, and \longleftarrow control $\operatorname{sing}(X, B)$.
- $M \geqslant 0 \quad \mathbb{R}$-Cartier \mathbb{R}-divisor, $A-M$ is pref. Then

$$
\operatorname{lct}\left(X, B,|M|_{\mathbb{R}}\right) \geqq \operatorname{lct}\left(X, B,|A|_{\mathbb{R}}\right) \geqq t \text {. }
$$

Remark: In the previous statement supp B \& supp M are not controlled.

Noether normalization: $X \xrightarrow{f} \mathbb{D}^{n}$ where $n=\operatorname{dim} X$.
finite surjective
Alexander.
(most of the time not Galois).
$\left\{\begin{array}{l}M \text { an-manifold then there exists a branched cover } M \longrightarrow S^{n}\end{array}\right.$ Which branches along a smooth submanifoll of dim $\leq n-2$.
in $\operatorname{drm}=2$, we branch along point.
in $\operatorname{dim}=3$, we branch along Borromean circles.

Proposition 5.2 (Finite morphisms to \mathbb{D}^{d}):
Let $\left.(X, \Lambda)=\sum_{i}^{d} S_{i=} S_{i}\right)$ be a log smooth projective pair. of dim d. where Λ is reduced. $B=\sum \cdot b_{j} B_{j} \geqslant 0$. be an \mathbb{R}-divira. Assume:

- $x \in \bigcap_{i=1}^{d} s_{i}$
- Supp B does not contain strata of (X, A) except possibly x,
- $A \& A-S_{i}$ are very ample.

There exists $\pi: X \longrightarrow \mathbb{D D}^{d}$ finite surjective, $\pi(x)=z=[1: 0 \ldots: 0]$, $\pi\left(s_{i}\right)=H_{i}, \quad \pi$ is étale around $z, \quad \operatorname{supp}(B) \cap \pi^{-1}(z) \subseteq x$., $\operatorname{deg} r=A^{d}$ and $\quad \operatorname{deg}_{H_{i}}(C) \leqslant \operatorname{deg} A B$ where $C=\sum_{i}$ bs $\pi\left(B_{;}\right)$.

Proof: $\alpha_{0}, \ldots, \alpha d$ global sections of $\theta_{x}(A)$

$$
X \xrightarrow{\pi} \mathbb{D}^{d} \text { finite sorjective }
$$

Proposition 5.5 (Bound on number of blow-ups): Assume

- (X,B) projective $\varepsilon-l e \quad d$-dim,
- A very ample $A^{d} \leqslant r$,
- $(X, \Delta) \log$ smooth Δ reduced, $\Delta \geq 20$.
- $\operatorname{deg}_{A} B \leq r$ and $\operatorname{deg}_{A} \Lambda \leqslant r$,
$\Theta)=\sum_{i=1}^{d} H_{i}$
- x is zero-dim strata of (X, Λ)
- supp B does not contain strata (X, A) except possibly x
- T is a \log canonical place of (X, A) with center X.
- a $(T ; X, B) \leqslant 1$.

Then, T can be extracted by, toroidal blow-ups writ (X, Λ))
\therefore at most $p=p(d, r, \varepsilon)$.
Sketch: $(X, B, \Delta) \xrightarrow[\text { replace }]{\sim}\left(\|^{D}, C, \Theta\right)$

We do not know if $\left(\mathbb{D}^{d}, c\right)$ is $\varepsilon-\left.\right|_{c}$ away from $z=[1: 0 \ldots 0]$.
Aim: modify C so that it is ε^{\prime}-le for some ε^{\prime} only depending on dir, ε.

Proof: Step 3: $\quad \underline{\left.\mathbb{D}^{d}, \Theta+t C\right)}$ is l_{c} away from z for some $t \in(0,1 / 2)$ only depending $t:=t(d, r)$
$\left(\mathbb{D}^{d}, \Theta+t c\right)$ will be kit away from $\operatorname{supp}(\Theta)$. $y \in \operatorname{Supp} \Theta, y \neq z$. G minimal linear subs which a strata of Θ and contains y. G is posifive-dimenional. $\operatorname{deg}_{H^{\prime}} C l_{G} \leqslant r, \quad H^{\prime}$ is a hyperplane in G.
G is not in the support of C.
Inductively $(G, t \subset[G)$ is kit for some $t=t(d, v)$.
Inversion of adjunction imphes $\left(\mathbb{D}^{d}, \Theta+t C\right)$ is k in a ngthd of y.

Step 4: We construct Δ such that $\left(\mathbb{P}^{d}, \Delta\right)$ is $\varepsilon^{\prime}-l_{c}$,

$$
\varepsilon^{\prime}=\frac{t}{2} \varepsilon, \quad K_{\mathbb{P}^{d}}+\Delta \sim_{\mathbb{R}} 0 \quad \text { and } \quad a\left(R, \mathbb{P}^{d}, \Delta\right) \leqslant 1 .
$$

Consider $D=(1-t / 2) \Theta+\frac{t}{2} C$. The pair (L Dd, D) is $\left.\varepsilon^{\prime}-\right)_{c}$. If the center contains z, then $\left(\mathbb{P}^{d}, C\right)$ is $\varepsilon-l_{c}$ around it. $\}$
If the center does not contain Z, this is not a lac of $\left(\left[\mathbb{D}^{d}, \Theta\right)\right.$.

Taking t small enough, we can make sure - (Kid + D) ample.
By construction $\quad a\left(R, \Vdash^{D d}, D\right) \leqslant 1$
$T_{2 k e} 0 \leqslant G \sim_{\mathbb{R}}-\left(K_{10^{j}}+D\right)$ very general \& set $\Delta=D+G$.

Review:

($\| D^{d}, C$) does not have nice sing away from z.
$\left(\|^{d}, \Theta+t c\right)$ still l_{c} away from z.
Construct \triangle such that $\left(\mathbb{L}^{D}, \Delta\right)$ is $\log (Y$, $\varepsilon^{\prime}-l c \& \quad a\left(R, \|^{D d}, \Delta\right) \leqslant 1$.

Remark: The coefficients of Δ are not controlled.

Step 5: $\quad W^{\prime} \xrightarrow{\phi} \mathbb{D}^{d}$ extracts R
$K_{W^{\prime}}+\Delta_{W^{\prime}}$ is the pull-back of $k_{p d+}$.

$$
\Leftrightarrow \varepsilon^{\prime}-l_{c}
$$

- K W^{\prime} is big. Run MMP on $-K_{w^{\prime}}$.
$W^{\prime} \longrightarrow W^{\prime \prime} \quad-K_{W^{\prime \prime}}$ is big \& semample
$W^{\prime \prime} \longrightarrow W^{\prime \prime \prime} \quad-K_{\text {W"' }}$ is ample.

$$
\left(W^{\prime}, \Delta_{W^{\prime}}\right) \cdots\left(W^{\prime \prime \prime}, \Delta_{W^{\prime \prime}}\right)^{\curvearrowleft} \text { is } \varepsilon^{\prime}-l_{0}
$$

We conclude that $W^{\prime \prime \prime}$ is Fans, tonic \& $\varepsilon^{\prime}-l_{c}$.
Then W'II belongs to a bounded family.
It admits a kit n-complement.
We can push-forward this complement to \mathbb{D}^{d}.
$\left(\mathbb{D}^{d}, \Omega\right) \log C r, \quad n\left(k p^{d}+\Omega\right) \sim 0, \quad$ and $\quad \circ\left(R, \psi^{d}, \Omega\right) \leq 1$.

Step 6: $\left[\mathbb{D}^{d}, \operatorname{supp}(\Omega+\Theta)\right)$ is \log boondal.
($\mathbb{D}^{d}, \Omega+u \Theta$) is k for some u only depending on dir, ε.
We conchie $\mu_{R} \phi^{*} \Theta \leq \frac{1}{u}$.
The length of blow-ups is at most $\left\lfloor\frac{1}{u}-1\right\rfloor$.

Proposition 5.7 (Bound of multiplicities at lap):
Assume The 1.8 in $d_{i m} \leq d-1$.
There exists $q:=q(d, r, n, \varepsilon)$ satisfying the following. Assume:

- (X,B) projective $\varepsilon-l_{0} d-d i m$,
- A very ample $A^{d} \leq r$,
- $\Lambda \geqslant 0 \& \quad n \Lambda$ integral.
- $L \geqslant 0$ is an \mathbb{R} - divisor,
- the divisors $A-B, A-\Lambda$ \& $A-L$ are pouco-effechive
- (X, Δ) is la near x,
- Tis a log canonical place of (X, A) with center X.
- $a(T ; X, B) \leqslant 1$.

For any resolution $v: U \longrightarrow X$ so that T is a divisor on U, we have that $\mu_{T} x^{*} L \leq q$.

Proof: Cutting with hyperplanes, we may assume x is closed. We will show the statement when (X, Ω) is ly smooth \& A is reduced.
$\left\{\begin{array}{c}\text { Aim: modify } B \text { s.t its support does not contain } \\ \text { strata of }(X, \Lambda 1) \text { that is not } x .\end{array}\right.$
$(X, \Delta \perp)$ is \log bounded $\left(X^{\prime}, \Lambda^{\prime}\right) \rightarrow(X, \Delta)$

Step 1: We may assume x is the only 0 -strata of (X, Λ)
Step 2: We show that $(X,(1+t) B)$ is $\frac{\varepsilon}{2}-l_{c}$ away from finitely many points. $t==t(d, n, r, \varepsilon)$. $H \in|A|$ general element.
By The 1.8 in dim $d-1$ we know that $\left(H, B_{H}+2 t B_{H}\right)$ is kIt

By inversion of adjunction $(X, B+2 t B)$ is kit near H $\|$
($X, B+2 t B$) is kit outside finitely many points
We conclude, taking average that $(X,(1+t) B)$ is $\frac{2}{2}-k$

Step 3: $\psi: V \rightarrow X$ log resolution.

$$
\begin{aligned}
\Gamma_{v} & =(1+t) \widetilde{B}+\left(1-\frac{\varepsilon}{4}\right) \sum_{i}^{\prime} E_{i}+(1-a) T \\
K_{v}+I_{v} & =\psi^{*}\left(K_{x}+B\right)+t \tilde{B}+F \quad \text { where } \quad F=\sum\left(a_{1}-\frac{\varepsilon}{4}\right) E_{i} \\
K_{v}+\Gamma_{v} & =\psi^{*}\left(K_{x}+(1+t) B\right)+G \text { where } G=\sum_{i}^{\prime}\left(a_{i}^{\prime}-\frac{\varepsilon}{4}\right) E_{i}+\left(a^{\prime}-a\right) T
\end{aligned}
$$

\log discrepancers wot $(X,(1+1) B)$.

Step 4: Ron a $\left(K_{v}+I_{v}\right)-M M P$ over X.
contract all divisors in the support of G with coeff >0 $K_{v}+\Gamma_{v} \equiv t \tilde{B}+F / x$, so T is not contracted by this MMP.
$\pi: Y \longrightarrow X$ that extracts T and is an isom away from finitely points.

Step 5: We construct $0 \leqslant D_{Y}$ on Y.

$$
\begin{aligned}
& A_{Y}=r^{*} A, \\
& K_{Y}+I_{Y}+3 \delta A_{Y} \quad \text { semiample \& big. } \\
& 0 \leq D_{Y} \sim R \frac{1}{t}\left(K_{Y}+I_{Y}+3 \delta A_{Y}\right) \text { with coeff } \leq 1-\varepsilon . \\
& D_{Y}=r^{*} H+\widetilde{B}_{Y}+\frac{1}{t} F_{Y}, \text { for some } \\
& H \sim \mathbb{R} \frac{1}{t}\left(K_{X}+B+3 \delta A\right) .
\end{aligned}
$$

Denote by D the posh-forward of D_{Y} to X. By construction $D=H+B$.

$$
\begin{aligned}
& \text { Step 6: }(X, B) \text { is } \varepsilon-I_{c} \\
&\left(Y, \widetilde{B}+R_{r}\right) \text { very general divisor, } \\
&\left(Y, R_{Y}+D_{Y} .\right. \\
& \quad \text { II } \\
& \\
& \pi^{*}(X, D) \text { is sub }-\varepsilon-l_{c}
\end{aligned}
$$

$$
\left.(X, D) \text { is } \varepsilon-l_{c}\right\} \quad \begin{aligned}
& W_{c} \text { can replace } \\
& R \ldots D
\end{aligned}
$$

$$
a(T, X, D) \leq 1
$$

$$
B \leadsto D .
$$

$$
3 m A-D \text { is ample }
$$

\& D does not contain strata of (x, Λ) def than x.

$$
\underbrace{N_{Y}+\Gamma_{Y}}_{{ }_{k l t}}+3 \delta A_{Y} \text { semiample \& big. }
$$

Boundedness of extremal lengths.

